An Effective Version of Kronecker’s Theorem on Simultaneous Diophantine Approximation

نویسنده

  • Gregorio Malajovich
چکیده

Kronecker’s theorem states that if 1, θ1, . . . , θn are real algebraic numbers, linearly independent over Q, and if α ∈ R, then for any > 0 there are q ∈ Z and p ∈ Z such that |qθi − αi − pi| < . Here, a bound on q is given in terms of the dimension n, of the precision , of the degree of the θi’s and of their height. A possible connection to the square-root sum problem is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Seminar in Topology and Actions of Groups. Kronecker Theorem and The Minimality of Certain Flows

In this work we shall prove the so called Kronecker’s Diophantine Approximation Theorem using the minimality of a certain discrete flow on the unit circle T. The work also contains a higher dimension generalization of the theorem to Tn.

متن کامل

A higher-dimensional Kurzweil theorem for formal Laurent series over finite fields

In a recent paper, Kim and Nakada proved an analogue of Kurzweil’s theorem for inhomogeneous Diophantine approximation of formal Laurent series over finite fields. Their proof used continued fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this note, we give another proof which works for simultaneous Diophantine approximation as well.

متن کامل

Extremal values of Dirichlet L - functions in the half - plane of absolute convergence par

We prove that for any real θ there are infinitely many values of s = σ + it with σ → 1+ and t→ +∞ such that Re {exp(iθ) logL(s, χ)} ≥ log log log log t log log log log t +O(1). The proof relies on an effective version of Kronecker’s approximation theorem. 1. Extremal values Extremal values of the Riemann zeta-function in the half-plane of absolute convergence were first studied by H. Bohr and L...

متن کامل

Diophantine Approximation with Arithmetic Functions, I

We prove a strong simultaneous Diophantine approximation theorem for values of additive and multiplicative functions provided that the functions have certain regularity on the primes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996